Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere

نویسندگان

  • D. V. Spracklen
  • K. J. Pringle
  • K. S. Carslaw
  • G. W. Mann
چکیده

A statistical synthesis of marine aerosol measurements from experiments in four different oceans is used to evaluate a global aerosol microphysics model (GLOMAP). We compare the model against observed size resolved particle concentrations, probability distributions, and the temporal persistence of different size particles. We attempt to explain the observed sub-micrometre size distributions in terms of sulfate and sea spray and quantify the possible contributions of anthropogenic sulfate and carbonaceous material to the number and mass distribution. The model predicts a bimodal size distribution that agrees well with observations as a grand average over all regions, but there are large regional differences. Notably, observed Aitken mode number concentrations are more than a factor 10 higher than in the model for the N Atlantic but a factor 7 lower than the model in the NW Pacific. We also find that modelled Aitken mode and accumulation mode geometric mean diameters are generally smaller in the model by 10–30%. Comparison with observed free tropospheric Aitken mode distributions suggests that the model underpredicts growth of these particles during descent to the marine boundary layer (MBL). Recent observations of a substantial organic component of free tropospheric aerosol could explain this discrepancy. We find that anthropogenic continental material makes a substantial contribution to N Atlantic MBL aerosol, with typically 60–90% of sulfate across the particle size range coming from anthropogenic sources, even if we analyse air that has spent an average of >120 h away from land. However, anthropogenic primary black carbon and organic carbon particles (at the emission size and quantity assumed here) do not explain the large discrepancies in Aitken mode number. Several explanations for the discrepancy are suggested. The lack of lower atmospheric particle formation in the model may explain low N Atlantic particle concentrations. However, the observed and Correspondence to: D. V. Spracklen ([email protected]) modelled particle persistence at Cape Grim in the Southern Ocean, does not reveal a diurnal cycle consistent with a photochemically driven local particle source. We also show that a physically based cloud drop activation scheme better explains the observed change in accumulation mode geometric mean diameter with particle number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

A GLObal Model of Aerosol Processes (GLOMAP) has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the re...

متن کامل

Contribution of primary carbonaceous aerosol to cloud condensation nuclei: processes and uncertainties evaluated with a global aerosol microphysics model

This paper explores the impacts of primary carbonaceous aerosol on cloud condensation nuclei (CCN) concentrations in a global climate model with size-resolved aerosol microphysics. Organic matter (OM) and elemental carbon (EC) from two emissions inventories were incorporated into a preexisting model with sulfate and seasalt aerosol. The addition of primary carbonaceous aerosol increased CCN(0.2...

متن کامل

The contribution of plume-scale nucleation to global and regional aerosol and CCN concentrations: evaluation and sensitivity to emissions changes

We implement the Predicting Particles Produced in Power-Plant Plumes (P6) sub-grid sulphate parameterization for the first time into a global chemical-transport model with online aerosol microphysics, the GEOS-Chem-TOMAS model. Compared to simulations using two other previous treatments of sub-grid sulphate, simulations using P6 subgrid sulphate predicted similar or smaller increases (depending...

متن کامل

Global aerosol microphysics model

A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties D. V. Spracklen, K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann The School of Earth and Environment, University of Leeds, UK Received: 2 November 2004 – Accepted: 20 December 2004 – Published: 14 January 2005 Correspondence to: D. V. Spracklen (dominick@env....

متن کامل

Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications

The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (marine cloud brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloudand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007